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Abstract: This modeling scenario examines the motion of a bowling ball with the goal of understanding

how various aspects of the release affect ball placement and the entry angle to the pocket, each an important

factor in the frequency of strikes. The equations of motion for a bowling ball are derived under modest

simplifying assumptions, allowing students to examine the effect of initial velocity and spin on the path

of the ball. The model can then be used to examine the sensitivity of various bowling strategies to small

deviations in the initial conditions. Several ideas for additional study are included for students who wish to

expand on the presented ideas.

SCENARIO DESCRIPTION

Bowling is a simple game. In each frame, a bowler has two opportunities to roll a spherical ball

down a narrow lane with the goal of knocking down ten free standing pins. A game consists of

ten such frames and the score of a game is based on the pinfall, i.e., the number of pins that are

knocked down during each frame. Scoring is highly nonlinear – two bowlers who knock down the

same number of pins can have very different scores. This nonlinearity stems from bonus points that

are earned when a bowler knocks down all ten pins in any given frame. The bowler scores a strike

by successfully knocking down all ten pins on the first attempt and earns bonus points equal to

the total pinfall of the next two balls. The bowler scores a spare by successfully knocking down all

ten pins using both attempts and earns bonus points equal to the total pinfall of the next ball. If

necessary, an additional bonus frame (or two) will be provided to settle bonus scoring for the tenth

frame. A perfect game consists of twelve consecutive strikes – the last two accounting for the bonus

points of the tenth frame – and leads to 30 points per frame and a total score of 300. In contrast, a

bowler who scores ten spares in one game can finish with a total score as low as 100. This disparity

underscores the importance of strikes in competitive bowling.
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The physical characteristics of the ball, pins, and lane play an important role in the difficulty of

scoring a strike [3, 5]. The ball itself is characterized by its 27-inch circumference, while its weight

typically ranges between 10 and 16 pounds for adult bowlers. The lane is 42 inches wide and the

distance from the foul line (where the ball is released) to the center of the head pin, labeled as #1

in Figure 1, is 60 feet. Gutters on either side of the lane happily accept errant balls and such gutter

balls generate no pinfall. The width of the lane is comprised of 39 narrow boards that run the length

of the lane. Additionally, a set of ten dots are painted on the lane 6 feet from the foul line along

with a series of arrows starting at a distance of approximately 12 feet from the foul line. These

markings help bowlers plan and adjust their attempts from one ball to the next. The ten pins are

arranged in a triangular pattern across four rows consisting of 1, 2, 3, and 4 pins, respectively. A

scale illustration of a typical lane is shown in Figure ?? on the last page of this document. The shape

and arrangement of the pins is more clearly illustrated by Figure 1, which includes an overhead view

as well as the view from the bowler’s perspective. Notice that pins 5, 8, and 9, respectively, stand

directly behind pins 1, 2, and 3, which can lead to difficult spare attempts when these sleeper pins

are obstructed after the first ball has been rolled.

(a) (b)

Figure 1. Pin arrangement and numbering convention.

The term pocket is used to refer to the gaps between either pins 1 and 2 or pins 1 and 3. Balls

entering either pocket have the greatest chance to produce a strike. Testing performed by the United

States Bowling Congress has shown that the angle of entry has a substantial effect on the frequency

of strikes [4]. This research suggests that a six degree angle of entry produces the highest frequency

of strikes and is less sensitive to small offset errors in ball placement within the pocket. As it turns

out, achieving a six degree angle of entry is not so simple. The scale illustration of Figure ?? conveys

the fact that a bowling lane is very narrow. In fact, a ball rolled from either side of the lane directly
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at the head pin will make an angle of

θ = tan−1

(
1.75

60

)
≈ 1.67◦

and any ball following a linear path into the pocket must have a smaller angle of entry. The only way

around this limitation is to apply spin to the ball so that it follows a curved path to the pocket. One

other physical characteristic of the lane must now enter the discussion. Bowling lanes are heavily

oiled and the oil pattern has a profound effect on the amount of hook that can be produced [2].

In this modeling scenario a typical house pattern will be adopted. House patterns place more oil

towards the center of the lane and extend roughly forty feet from the foul line. A 2014 research

paper by Banerjee and McPhee states that the coefficient of friction between the ball and the lane

is approximately 0.04 in oiled areas, compared to 0.2 in dry areas [1]. In the absence of other

information, these values will be used throughout this modeling scenario.

The goal of this modeling scenario is to develop differential equations that govern the path of a

bowling ball in terms of the velocity and spin applied to the ball at the time it is released. These

equations of motion can then be used to compare different strategies for placing the ball in the

pocket with a satisfactory angle of entry.

Materials

This modeling scenario can be completed without any additional materials and, as written,

makes use of no data. However, interested students are encouraged to visit a local bowling alley to

develop intuition and possibly collect usable data.

� Position data may be extracted from a good video of a thrown ball.

� A stop watch could be used to estimate the speed of a thrown ball.

� A slow motion video may shed light on the spin rate of the ball.

1 Rolling with Slipping

The motion of the bowling ball will be modeled using the three-dimensional coordinate system

illustrated in Figure 2. This coordinate system places the origin on the foul line at the right edge of

the lane and respects the right-hand rule. The positive x-axis thus runs along the right-hand edge

of the lane, while the positive y-axis runs along the foul line from right to left. The unit vectors in

the direction of the x, y, and z axes will be denoted by i⃗, j⃗, and k⃗, respectively.

Consider a two-dimensional model of a bowling ball rolling with linear velocity v and angular

velocity ω moving along the positive x-axis, as shown in Figure 3. In this illustration, v corresponds

to the velocity of the center of the ball while ω represents the angular velocity (or spin rate) of the

ball about its center, while R is the radius of the ball. Although both v and ω are assumed to vary

with time (denoted by t), this dependence will be suppressed to simplify the notation.
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Figure 2. A three-dimensional coordinate system for the motion of a bowling ball.

Figure 3. Two-dimensional illustration of a rolling bowling ball.

The velocity at a point P on the outer surface of the ball is a combination of the linear and angular

velocities. The point on the top of the ball has velocity v + ωR, while the point on the bottom of

the ball has velocity v − ωR. When v = ωR, the velocity of the ball at the point of contact is zero

and the ball rolls a distance equal to 2πR with each complete revolution of the ball. In this case,

the ball is said to be in a state of pure rolling and will experience no acceleration. In contrast, when

v ̸= ωR, the velocity of the ball at the point of contact is nonzero, which means the ball is slipping.

If v > ωR, the ball slips in the positive x direction at the point of contact and will be met with

an opposing frictional force. This force will act to increase the spin rate of the ball while reducing

the linear velocity of the ball. Similarly, if v < ωR, the ball slips in the negative x direction at the

point of contact and the frictional force will act in the positive x direction, decreasing the spin rate

and increasing the linear velocity of the ball. A ball with excess spin (v < ωR) will accelerate as

it heads towards the pins, while a ball with a spin deficit (v > ωR) will decelerate as it makes its

way down the lane. A similar force acts in the y direction when a bowling ball is rotating about the

x-axis, allowing the ball to follow a curved path as it heads down the lane.

It will be convenient to introduce vector notation for the development of a three-dimensional

model of a rolling bowling ball. Let v⃗ represent the velocity vector of the center of the ball and let v⃗P

represent the velocity at a point P on the surface of the ball. The relative velocity of P with respect

to the center of the ball is defined as v⃗P − v⃗ and can be computed in terms of the angular velocity

of the ball and the position vector of P relative to the center of the ball, r⃗P . Angular velocity will

be represented as a vector ω⃗ parallel to the axis of rotation with magnitude equal to the speed of

rotation in radians per second. The direction of ω⃗ is determined using the right-hand rule, i.e., when

the fingers on one’s right hand are curled about the axis of rotation in the direction of motion, the
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extended thumb will point in the direction of ω⃗. The relative velocity v⃗P − v⃗ must be perpendicular

to both ω⃗ and r⃗P with speed equal to the product of ∥ω⃗∥ and the perpendicular distance from P to

the axis of rotation. This relationship can be described precisely using the cross-product as

v⃗P = v⃗ + ω⃗ × r⃗P . (1)

As in the two-dimensional analysis, the velocity at the point of contact on the bottom of the ball

is of primary interest. Let B represent the point of contact between the ball and the lane, so that

r⃗B = −Rk⃗. Write v⃗ = vx⃗i+ vy j⃗ and ω⃗ = ωx⃗i+ ωy j⃗ + ωz k⃗, so that the ball may now have nonzero

velocities in both the x and y directions while spinning about an arbitrary axis of rotation. Using

(1), the velocity of the point on the bottom of the ball is given by

v⃗B = (vx⃗i+ vy j⃗) + (ωx⃗i+ ωy j⃗ + ωz k⃗)× (−Rk⃗)

= (vx − ωyR)⃗i+ (vy + ωxR)⃗j.
(2)

Notice that while it is certainly possible to spin a bowling ball around the z-axis, this component

of ω⃗ has no effect on v⃗B and thus will not influence the path of the ball. One possible configuration

for a bowling ball at the time of release is illustrated in Figure 4. In this scenario, the ball would

be released towards the left side of the foul line (y = 2.75 ft) and aimed slightly towards the right

gutter (vx = 22 ft/s, vy = −1.85 ft/s) with some top spin (ωy = 1 rev/s) and a large amount of

side spin (ωx = −4.5 rev/s). Notice that the ball is sliding forward and to the right, which means

the frictional force will act to decrease vx while increasing vy. This will cause the ball to curve to

the left as it rolls down the lane.

The magnitude of the frictional force acting on the ball at the point of contact with the lane is

equal to µmg, where µ is the coefficient of kinetic friction, m is the mass of the ball, and g represents

acceleration due to gravity. For the purposes of this modeling scenario, it will be assumed that

g ≈ 32.17 ft/s2. The equations of motion for the ball can then be determined from the vector

forms of Newton’s Second Law,

ma⃗ = F⃗ and Iα⃗ = r⃗B × F⃗ , (3)

where a⃗ represents the acceleration vector of the center of the ball, F⃗ is the frictional force at point

B, I is the rotational inertia of the ball about its center, and α⃗ is the angular acceleration of the

ball about its center. For simplicity, the equations of motion will be derived under the assumption

that v⃗B ̸= 0⃗, but the reader should note that both a⃗ and α⃗ are zero when v⃗B = 0⃗, i.e., once the ball

achieves a state of pure rolling. Recall that the frictional force F⃗ acts in the opposite direction to

v⃗B , so that

F⃗ = −µmg
v⃗B
∥v⃗B∥

. (4)

Recall that for any vector v⃗: (1) ∥v⃗∥2 = v⃗ · v⃗ and (2) v⃗/∥v⃗∥ is a unit vector in the same direction as

v⃗. These facts will be used again below. Notice that (4) makes it possible to eliminate the mass m

from (3), leading to the following expression for the acceleration of the ball,

a⃗ = −µg
v⃗B
∥v⃗B∥

. (5)
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(a) Top View (b) Isometric View

(c) Bowler’s View (d) Side View

Figure 4. An illustration of a bowling ball rolling with slipping.

Modeling the bowling ball as a uniform sphere, its rotational inertia is given by I = 2
5mR2. The

angular acceleration can then be written as

α⃗ = − 5µg

2R2

(
r⃗B × v⃗B

∥v⃗B∥

)
=

5µg

2R
(k⃗ ×

(
(vB)x
∥vB∥

i⃗+
(vB)y
∥vB∥

j⃗

)
=

5µg

2R

(
− (vB)y

∥vB∥
i⃗+

(vB)x
∥vB∥

j⃗

)
.

(6)

Recall that a⃗ = dv⃗
dt and α⃗ = dω⃗

dt . Combining these identities with the observation that dx
dt = vx and

dy
dt = vy, one obtains a system of six first-order differential equations for the motion of a bowling

ball:
dx

dt
= vx

dvx
dt

= −µg
(vB)x
∥v⃗B∥

dωx

dt
= −5µg

2R

(vB)y
∥v⃗B∥

dy

dt
= vy

dvy
dt

= −µg
(vB)y
∥v⃗B∥

dωy

dt
=

5µg

2R

(vB)x
∥v⃗B∥

.

(7)
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These differential equations apply so long as the ball is rolling with slipping. Once the ball reaches

a state of pure rolling, it will continue with constant velocities in both the x and y directions.

Questions:

1. The following exercises explore some subtle aspects of rolling with slipping for a bowling ball.

a. Use the equations of motion (7) to create a differential equation for v⃗B .

b. Use the differential equation from (a) to explain the fact that the direction of the frictional

force on a bowling ball in motion is constant up to the moment that pure rolling is achieved.

Is the magnitude of the frictional force also constant? Explain your answer.

c. Assume that µ is constant. Derive a formula in terms of the initial conditions for the time

when a bowling ball will reach a state of pure rolling.

2. The goal of this problem is to determine the path of a bowling ball from any given initial

conditions.

a. Assume that µ is constant. Solve the equations of motion (7) to obtain explicit solutions

for x(t) and y(t) both before and after the moment that the ball achieves a state of pure

rolling.

b. Explain how one can use the solution from (a) to account for the transition from the oiled

section of the lane to the dry section of the lane.

c. Find expressions for x(t) and y(t) using the initial conditions of Table 1 under the assumption

that µ = 0.04 for 0 ≤ x ≤ 40 and µ = 0.20 for x > 40. Graph the path of the ball and

describe any interesting features.

Table 1. Initial conditions for Question 2(c).

x(0) y(0) vx(0) vy(0) ωx(0) ωy(0)

ft ft ft/s ft/s rev/s rev/s

0 0.8 20 0 -1 2

3. Recall that the greatest frequency of strikes occurs when the angle of entry to the 1–3 pocket

is approximately 6 degrees. Adjust the initial conditions of the model to create a strategy for

achieving a near-optimal angle of entry. Are the chosen initial conditions physically reasonable?

4. Notice that the mass m of the bowling ball does not appear in the equations of motion (7). Does

the mass of the ball play any role in a bowler’s ability to achieve a desired path or entry angle?

Explain your answer.
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Ideas for Further Exploration

A. Sensitivity Study: Choose one or more bowling styles and use the mathematical model to identify

initial conditions that produce a satisfactory angle of entry. Examine the effect of small deviations

in the initial conditions on the ball placement and angle of entry. It might be interesting to

hypothesize about how a bowler’s game changes when they are tired.

B. Spin Rate: Describe an approach to calculating the number of rotations a ball makes on its way

down the lane. Compare the number of rotations made on the oiled and dry sections of the lane.

What is the smallest number of rotations that can reasonably be achieved? Can a slow motion

video provide information about typical spin rates of a bowling ball?

C. Strategy for Spares: Formulate and test a hypothesis about whether or not a “hook shot”

increases the margin of error when attempting a spare. The answer may depend on the specific

layout of the pins as well as the type of hook shot used. Use the mathematical model to measure

the effect of error in the release angle on the desired ball placement.

D. Oil Patterns: This modeling scenario assumes that oil is distributed uniformly in the oiled section

of the lane. Modern bowling alleys uses programmable units that are capable of applying a wide

variety of oil patterns for competitive bowling. One could attempt to capture greater realism

by implementing a two-dimensional model for the coefficient of friction, e.g., increasing the

coefficient of friction near the gutters.

E. Asymmetric Balls: Many bowling balls include an asymmetric core that alters the rotational

inertia of the ball. The core is designed to increase the hook of the ball when rolled about a

specific axis. Adapt the model to account for such a design and test its effect on the achievable

angle of entry.

F. Pin Action: Rotation of the bowling ball about the z axis has no effect on the path followed by

the ball since this component of rotation does not contribute to v⃗B , the relative velocity of the

point on the bottom of the ball. Nevertheless, it is natural to wonder if a high spin rate about

the z axis has any effect on the movement of the pins once the ball makes contact.

G. Oil Absorption: A variety of materials are used for the outer shell of modern bowling balls. Some

bowling balls are designed to absorb oil in order to achieve a higher coefficient of friction and

greater hook. In fact, most bowling alleys now have coin-operated machines that are designed

to clean a ball, removing any absorbed oil. It could be interesting to examine the long term

behavior of an absorptive bowling ball that is not cleaned.
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